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Abstract
A novel method for solving the linear radiative transport equation (RTE) in
a three-dimensional homogeneous medium is proposed and illustrated with
numerical examples. The method can be used with an arbitrary phase function
A(ŝ, ŝ′) with the constraint that it depends only on the angle between the angular
variables ŝ and ŝ′. This assumption corresponds to spherically symmetric (on
average) random medium constituents. Boundary conditions are considered
in the slab and half-space geometries. The approach developed in this paper
is spectral. It allows for the expansion of the solution to the RTE in terms
of analytical functions of angular and spatial variables to relatively high
orders. The coefficients of this expansion must be computed numerically.
However, the computational complexity of this task is much smaller than in the
standard method of spherical harmonics. The solutions obtained are especially
convenient for solving inverse problems associated with radiative transfer.

PACS numbers: 05.60.Cd, 87.57.Gg, 42.68.Ay, 95.30.Jx

1. Introduction

1.1. Background

The contemporary mesoscopic theoretical description of multiple scattering of waves in
random media is most often based on the linear radiative transport equation (RTE) [1].
Unfortunately, the RTE is notoriously difficult to solve, even in the case of constant absorption
and scattering coefficients. The known analytical solutions are few and of little practical
importance. Yet, there is a growing need for accurate and computationally efficient solutions
to the RTE in many fields of applied and fundamental science. For example, in optical
tomography of biological tissues [2, 3], the use of the RTE is frequently required to accurately
describe propagation of multiply scattered light. This is especially true in close proximity
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to sources or boundaries [4], or in regions with high absorption and low scattering [5, 6].
Accordingly, significant effort has been devoted to developing and refining efficient
approximate and numerical methods for solving the RTE. In particular, recently explored
approaches have been based on the discrete ordinate method [7–9], cumulant expansion
[10, 11], modifications of Ambarzumian’s method [12, 13] and different levels of the PL

approximation [14, 15]. Algorithms for inversion of the RTE have also been proposed
[16–19].

The discrete ordinate method (see [20] for a detailed description) is, perhaps, the most
common approach due to its simplicity and generality. An alternative to the discrete ordinate
method is the method of spherical harmonics, often referred to as the PL approximation, in
cases with special symmetry. This approach has the advantage of expressing the angular
dependence of the specific intensity in a basis of analytical functions3 rather than in the
completely local basis of discrete ordinates. In particular, in the case of cylindrical symmetry
(one-dimensional propagation), a very effective solution based on a continued fraction
expansion can be obtained [21]. However, when no special symmetry is present in the
problem, the method of spherical harmonics can be carried out in practice only to very low
orders. In a recent paper [22], we have suggested a modification of the standard method of
spherical harmonics. The modification is based on expanding the angular part of each Fourier
component of the specific intensity in the basis of spherical functions defined in a reference
frame whose z-axis is aligned with the direction of the Fourier wave vector k. This approach
resulted in significant mathematical simplifications and was referred to as the modified method
of spherical harmonics in [22]. Here we find it more appropriate to call it the method of
rotated reference frames (MRRF).

In [22], the derivation of the RTE Green’s function by the MRRF was only briefly
sketched for the case of an infinite medium and numerical examples were limited to a few
simple cases with spherical symmetry. Here we give the full mathematical details of the
derivation and discuss the mathematical properties of the solutions obtained, derive plane-wave
decomposition of Green’s function, and generalize the MRRF to the case of planar boundaries.
We also provide extensive numerical examples for cases with no special symmetry. The paper
is organized as follows. In section 1.2, we introduce the RTE and basic notations, and explain
why the use of rotated reference frames is beneficial. In section 2 we define spherical functions
in rotated reference frames. In section 3 we apply the MRRF to the derivation of Green’s
function. In particular, Green’s function in the Fourier representation is given in section 3.1.
Mathematical properties of the solutions are discussed in section 3.2. Different representations
for Green’s function in real space are given in section 3.3. A plane-wave decomposition of
Green’s function is derived in section 3.4. In section 3.5, we introduce evanescent modes
of the homogeneous RTE. These modes are important mathematical constructs which can be
used for solving the RTE in the presence of planar boundaries, as is shown in section 3.6.
Section 4 contains numerical examples of applying the MRRF to calculating Green’s function
in infinite space. Finally, section 5 contains a discussion.

The novel element of the MRRF is the use of a k-dependent angular basis, not the use of
a Fourier integral decomposition. The latter has been used to derive an analytic expression
for Green’s function of the RTE in an infinite medium with isotropic scattering [23]. Note
that this is the only case in which analytic solution to the three-dimensional RTE has been
derived. The obtained solution, however, has proven to be of little use. First, it is given
by a formally divergent integral which cannot be evaluated analytically and is difficult to

3 Here the term ‘analytical’ means ‘expressed in terms of well-characterized functions through explicit formulae’,
not necessarily analytic in the Cauchy–Riemann sense.
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compute numerically. Second, generalization of the method to non-isotropic scattering and
bounded media is highly problematic. In the case of the MRRF, the Fourier integral plays
only a secondary role. The main distinguishing feature of this approach is that the inverse
Fourier transform is evaluated analytically. Thus, in the case of an infinite medium, this leads
to expressions for the real-space Green’s function given in section 3.3. In the case of planar
interfaces, Green’s function is given by a two-dimensional Fourier integral (as an expansion
over evanescent plane wave modes, see sections 3.4–3.6). This integral cannot be evaluated
analytically. However, two points must be made. First, the expansion is what is often needed
for solving the inverse problem associated with transmission through an inhomogeneous slab
[24]. The plane-wave decomposition of the RTE Green’s function is of great interest and
was recently studied with the use of the method of discrete ordinates [7, 8]. Second, such
a decomposition can be obtained without the use of the MRRF only in the form of a one-
dimensional integral with a complicated structure and then only in an infinite medium with
isotropic scattering.

1.2. RTE and the conventional method of spherical harmonics

The RTE describes the propagation of the specific intensity I (r, ŝ), at the spatial point r and
flowing in the direction specified by the unit vector ŝ, in a medium characterized by absorption
and scattering coefficients µa and µs , and has the form

ŝ · ∇I + (µa + µs)I = µsAI + ε. (1)

Here ε = ε(r, ŝ) is the source and A is the scattering operator defined by

AI (r, ŝ) =
∫

A(ŝ, ŝ′)I (r, ŝ′) d2ŝ′. (2)

The phase function A(ŝ, ŝ′) is normalized according to the condition
∫

A(ŝ, ŝ′) d2ŝ′ = 1. We
also assume that it depends only on the angle between ŝ and ŝ′: A(ŝ, ŝ′) = f (ŝ · ŝ′). This
fundamental assumption is often used and corresponds to scattering by spherically symmetric
particles.

In the conventional method of spherical harmonics, all angle-dependent quantities are
expanded in the basis of spherical harmonics defined in the laboratory frame [25]:

I (r, ŝ) =
∑
lm

Ilm(r)Ylm(ŝ), (3)

ε(r, ŝ) =
∑
lm

εlm(r)Ylm(ŝ), (4)

A(ŝ, ŝ′) =
∑
lm

AlYlm(ŝ)Y ∗
lm(ŝ′). (5)

In particular, truncating the above series at l = 1 leads to the well-known diffusion
approximation to the RTE [25]. In the more general case, substituting expansions (3)–(5)
into the RTE (1), multiplying the resulting equations by Y ∗

l′m′(ŝ) and integrating over ŝ leads
to the following system of equations for Ilm(r):∑

l′m′

[
R

(x)
lm,l′m′

∂Il′m′

∂x
+ R

(y)

lm,l′m′
∂Il′m′

∂y
+ R

(z)
lm,l′m′

∂Il′m′

∂z

]
+ σlIlm = εlm, (6)

where R(α) = ∫
sαY ∗

lm(ŝ)Yl′m′(ŝ) d2ŝ (α = x, y, z) are matrices whose explicit form is given
in [25] and

σl = µa + µs(1 − Al). (7)
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This system of partial differential equations must be solved for l = 0, 1, 2, . . . , lmax and
m = −l, . . . , l, where lmax is the truncation order of the expansion (3)–(5).

In a classic text, Case and Zweifel wrote concerning the system of equations (6): ‘this
rather awe-inspiring set of equations . . . has perhaps only academic interest’ ([25], p 219). We
note that the root of the difficulty is not that the matrices R(α) are dense (in fact, they only
couple coefficients with m′ = m, l′ = l ±1 for α = z and m′ = m±1, l′ = l±1 for α = x, y)
or non-commuting (in fact, it is easy to verify that all R(α) commute). The difficulty is that
these matrices operate on the spatial derivatives of Ilm taken along different directions. Thus,
by viewing the set of three matrices R(α) as a three-dimensional vector of matrices R, and
using the Fourier representation for Ilm, we can rewrite the term in the square bracket of (6)
as ik · Rlm,l′m′Il′m′(k). It can be seen that the matrix k · R depends explicitly on the direction
and length of k. (See similar formulation in [26].)

The method of rotated reference frames (MRRF), similar to the conventional method of
spherical harmonics, does not lead to the separation of spatial and angular variables which
is impossible for the RTE. However, by choosing a different k-dependent angular basis, we
replace the dot product k · R by an expression of the type kR, where k = |k| is a scalar and
R is a single k-independent block-diagonal matrix. It is shown below that, given generalized
eigenvectors and eigenvalues of R which must be computed numerically, the solution can be
obtained in terms of analytical functions of spatial and angular variables4.

2. Spherical functions in rotated frames

The ordinary spherical harmonics Ylm(θ, ϕ) are functions of two polar angles in a fixed
(laboratory) reference frame. Equivalently, we can view them as functions of a unit vector, ŝ.
In this case, θ and ϕ are the polar angles of ŝ in the laboratory frame. More generally, both
the orientation of the reference frame and the direction of ŝ can vary. We will need to define
spherical functions of a unit vector ŝ in a reference frame whose z-axis coincides with the
direction of a given unit vector k̂. Obviously, there are infinitely many such reference frames.
To define one uniquely, it is sufficient to consider a rotation of the laboratory frame with the
following three Euler angles: α = ϕk̂, β = θk̂ and γ = 0, where θk̂ and ϕk̂ are the polar
angles of k̂ in the laboratory frame. The transformation from the laboratory frame (x, y, z)

to the rotated frame (x ′, y ′, z′) is illustrated in figure 1. We denote spherical functions of ŝ in
the reference frame defined by the above transformation by Ylm(ŝ; k̂). They can be expressed
as linear combinations of the spherical functions defined in the original (laboratory) frame
according to

Ylm(ŝ; k̂) = Ylm(ŝ; ẑ′) =
l∑

m′=−l

Dl
m′m(ϕk̂, θk̂, 0)Ylm′(ŝ; ẑ), (8)

where

Dl
mm′(α, β, γ ) = exp(−imα)dl

mm′(β) exp(−im′γ ) (9)

are the Wigner D-functions; the explicit form of dl
mm′(β) is given, for example, in [27].

4 In principle, it should be also possible to use the fact that all matrices R(α) in (6) commute and, hence, have
the same set of eigenvectors, to solve (6) by diagonalizing just one k-independent matrix and analytically inverting
the Fourier transform, and thus avoid the use of rotated reference frames. This approach has some advantages and
difficulties associated with it, and to the best of our knowledge, has not been explored so far. If successful, it should
lead to the same solutions as described below.
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Figure 1. Illustration of the rotated reference frame.

It is important to note that the expansion of the scattering kernel into the spherical functions
Ylm(ŝ; k̂) is independent of the direction of k̂:

A(ŝ, ŝ′) =
∑
lm

AlYlm(ŝ; k̂)Y ∗
lm(ŝ′; k̂). (10)

Here the expansion coefficients Al are independent of k̂ and are the same as in (5). This fact
follows from the rotational invariance of the scalar product.

3. Theory

3.1. Green’s function in the Fourier representation

By definition, Green’s function G(r, ŝ; r0, ŝ0) satisfies RTE (1) with the source ε =
δ(r − r0)δ(ŝ − ŝ0). We will refer to r0, ŝ0 and r, ŝ as the location and direction of the
source and detector, respectively. In infinite isotropic space, Green’s function can be written
in the following general form:

G(r, ŝ; r0, ŝ0) =
∑

lm,l′m′

∫
d3k

(2π)3
exp[ik · (r − r0)]Ylm(ŝ; k̂)〈lm|K(k)|l′m′〉Y ∗

l′m′(ŝ0; k̂). (11)

Here K(k) is an unknown operator. The reciprocity of Green’s function, G(r, ŝ; r0, ŝ0) =
G(r0,−ŝ0; r,−ŝ), together with the fact that G is real, implies the following symmetry property
of K: 〈l′m′|K|lm〉 = (−1)l+l′ 〈lm|K|l′m′〉∗. This can be also written as PK†P = K , where P
is the coordinate inversion operator with matrix elements 〈lm|P|l′m′〉 = (−1)lδll′δmm′ and †
denotes Hermitian conjugation. Thus, it can be seen that K is not a Hermitian operator.

Substituting (11) into (1) and using the orthogonality properties of the spherical functions,
we arrive at the following operator equation for K(k):

(ikR + �)K(k) = 1. (12)

The matrices R and � are defined by

〈lm|R|l′m′〉 =
∫

(ŝ · k̂)Y ∗
lm(ŝ; k̂)Yl′m′(ŝ; k̂) d2ŝ

= δmm′[blmδl′=l−1 + bl+1,mδl′=l+1], (13)

blm =
√

(l2 − m2)/(4l2 − 1), (14)

〈lm|�|l′m′〉 = σlδll′δmm′ , (15)
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where σl is given by (7). The formal solution to (12) can be written as

K(k) = S(1 + ikW)−1S, (16)

where S = 1/
√

� and W = SRS. Note that 〈lm|S|l′m′〉 = δll′δmm′/
√

σl exists because
σl > 0, which follows from the inequalities Al � 1 and µa > 0.5 Similarly to R,W is a real
symmetric matrix. Therefore, we can use the spectral theorem to express (1 + ikW)−1 in terms
of the eigenvectors and eigenvalues of W, |ψµ〉 and λµ, respectively. This immediately leads
to the following expression for K(k):

K(k) =
∑

µ

S|ψµ〉〈ψµ|S
1 + ikλµ

. (17)

Given the set of eigenvectors and eigenvalues, which can be found by numerical diagonalization
of W , the above formula solves the problem in Fourier space. Since the components of |ψµ〉
in the |lm〉 basis are purely real, it can be seen that K is symmetric.

3.2. Mathematical properties of the solution

3.2.1. Block structure of W . First, we note that W is block-diagonal: 〈lm|W |l′m′〉 =
δmm′ 〈l|B(m)|l′〉. Below, we will label different blocks B(M) (M = 0,±1,±2, . . .) by the
capital letter M. The matrix elements of B(M) are given by

〈l|B(M)|l′〉 = βl(M)δl′=l−1 + βl+1(M)δl′=l+1, l, l′ � |M|, (18)

βl(M) = blM/
√

σlσl−1. (19)

Obviously, to find all eigenvalues and eigenvectors of W , it is sufficient to diagionalize each
block separately. This task is further simplified because all blocks B(M) are tridiagonal. We
denote eigenvectors of a block B(M) by |φn(M)〉. Then the eigenvector of the full matrix W

with the same eigenvalue is obtained according to

〈lm|ψMn〉 = δmM〈l|φn(M)〉. (20)

The corresponding eigenvalue is denoted by λMn, where we have introduced a composite
index (M, n). Note that B(M) = B(−M).

3.2.2. Symmetry properties of the eigenvectors. The property PK†P = K and equation (16)
imply that PWP = −W . Thus, W is odd with respect to coordinate inversion. In particular,
if |ψ〉 is an eigenvector of W with the eigenvalue λ, then |ψ̃〉 = P|ψ〉 is also an eigenvector
of W but with an eigenvalue of the opposite sign, λ̃ = −λ. The complete set of eigenvectors
{|ψµ〉 : µ ∈ �}, where � is the set of all values of the index µ, can then be equivalently
rewritten as {|ψµ〉, |ψ̃µ〉 : µ ∈ �+}, where �+ is the set of indices µ that correspond to positive
eigenvalues λµ. The set of indices that correspond to negative eigenvalues can be denoted as
�−; then � = �+ ∪ �− and �+ ∩ �− = {0}.

Using these properties, one can transform the summation over all values of µ in (17) to
summation over µ ∈ �+ (such sums will be denoted as

∑′
µ below). This fact facilitates the

inverse Fourier transformation (see appendix A) and solution of the boundary-value problem
discussed in section 3.6.

5 Purely scattering media with µa = 0 can be considered separately.



Radiative transport equation in rotated reference frames 121

3.2.3. Continuous and discrete spectra. Third, the eigenvalues λµ can belong either to
the discrete or continuous spectrum. It is easy to see that the spectrum is continuous for
|λ| < 1/µt , where µt = µa +µs , and discrete for |λ| > 1/µt . Indeed, consider the three-point
recurrence relation that follows from the equation W |ψ〉 = λ|ψ〉:

βl(m)〈l − 1,m|ψ〉 + βl+1(m)〈l + 1,m|ψ〉 = λ〈lm|ψ〉, l � |m|. (21)

In general, it has two types of solutions: polynomial and exponential. Consider the asymptotic
properties of these solutions. In the limit l → ∞ we have Al → 0, σl → µt, blm → 1/2 and
βl(m) → 1/2µt . The recurrence relation then becomes

〈l − 1,m|ψ〉 + 〈l + 1,m|ψ〉 = 2µtλ〈lm|ψ〉. (22)

The polynomial solutions have the asymptotic form 〈lm|ψ〉 = pm
l (λµt), where pm

l (x) are
general orthogonal polynomials of degree l (not to be confused with the associated Legendre
functions which solve the recurrence (21) in the particular case µs = 0). In order for this
solution to be an eigenvector of W , it must be bounded. Obviously, this requirement is
equivalent to |λµt | � 1. Thus, for every λ ∈ [−1/µt , 1/µt ], there is a polynomial solution to
the three-term recurrence relation that is an eigenvector of W .

For λ outside of the interval [−1/µt , 1/µt ], polynomial solutions are unbounded and,
therefore, cannot be eigenvectors of W . We then consider exponential solutions which behave
asymptotically as 〈lm|ψ〉 = (±1)l exp(−pl) where p satisfies the equation cosh(p) = ±µtλ.
In order for this solution to be an eigenvector of W,p must be positive. But the above equation
has positive roots only when |λ| � 1/µt . Note that the exponentially decaying eigenvectors
have a finite L2 norm, and, hence, belong to the discrete spectrum. Further bounds on the
discrete spectrum can be inferred from the Gershgorin theorem, which states that, for a fixed
M, |λMn| � rM = maxl�|M|[βl(M) + βl+1(M)]. It can be easily verified that r0 = 2/

√
3µa

and rM = 1/µa for |M| > 0.
In numerical computations, the infinite-dimensional matrix W must be truncated and the

continuous spectrum of W approximated by a discrete spectrum. In this paper we treat all
eigenvalues as discrete. Thus, for example, the expression (17) contains only a sum over
discrete modes, although, theoretically, summation over the continuous part of the spectrum
must be expressed as an integral. Note that an expression involving only discrete spectra avails
itself more readily to numerical implementation.

3.3. Green’s function in real space

The dependence of solution (17) on k is analytical. This allows us to obtain Green’s function in
the coordinate representation by Fourier transformation. We substitute (17) into the ansatz (11)
and express the spherical functions Ylm(ŝ; k̂) and Yl′m′(ŝ0; k̂) in terms of spherical functions
defined in the laboratory frame whose z-axis direction is given by a unit vector ẑ according to
(8), (9). The direction of the x- and y-axes of the laboratory frame is arbitrary. This leads to
the following expression:

G(r, ŝ; r0, ŝ0) =
∑
lm

∑
l′m′

Ylm(ŝ; ẑ)〈lm|χ(r − r0; ẑ)|l′m′〉Y ∗
l′m′(ŝ0; ẑ), (23)

where

χ(r; ẑ) =
∫

d3k
(2π)3

exp(ik · r)D(k̂; ẑ)K(k)D†(k̂; ẑ) (24)

Here D(k̂; ẑ) = exp(−iϕk̂Jz) exp(−iθk̂Jy) is the rotation operator whose matrix elements are
given by the Wigner D-functions, 〈lm|D(k̂; ẑ)|l′m′〉 = δll′D

l
mm′(ϕk̂, θk̂, 0), ϕk̂ and θk̂ are the
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polar angles of k in the laboratory frame, and J is the angular momentum operator (with
h̄ = 1). We note that operators D are unitary and, hence, normal: D−1 = D†. However, D
does not commute with K. The fundamental simplification obtained by the MRRF is that D is
known analytically while K has a simple form given by (17). In particular, given numerical
values of |ψµ〉 and λµ, the dependence of K(k) on k is also known analytically.

Below, we consider two different cases. In the first case, the direction of the
laboratory frame z-axis coincides with the direction from the source to the detector, namely,
ẑ = (r − r0)/|r − r0|. This choice of the angular basis is convenient when the source and
the detector are always placed on the same line, irrespective of the directions ŝ and ŝ0. In the
second case, we choose ẑ = ŝ0. This approach is useful when the source is scanned, e.g.,
over a two-dimensional plane, but its direction ŝ0 is fixed. This situation is typical for optical
tomography in the slab geometry. The integral (24) for the two cases is evaluated in appendix A.
The result is, in the first case:

〈lm|χ(r; r̂)|l′m′〉 = δmm′

2π
√

σlσl′

l̄∑
M=−l̄

(−1)M
l̄∑

j=0

C
|l−l′|+2j,0
l,M,l′,−M C

|l−l′ |+2j,0
l,m,l′,−m

×
∑

µ

′ 〈lM|ψµ〉〈ψµ|l′M〉
λ3

µ

k|l−l′|+2j

(
R

λµ

)
. (25)

Here l̄ = min(l, l′), kn(x) = −inh(1)
n (ix) is the modified spherical Bessel function of the first

kind (defined without a factor of π/2), C
j3m3
j1m1j2m2

are the Clebsch–Gordan coefficients and∑′ denotes summation over only such indices µ that correspond to positive eigenvalues λµ.
It can be seen that χ(r; r̂) is diagonal in m and m′, which corresponds to the invariance of
Green’s function with respect to a simultaneous rotation of the vectors ŝ and ŝ0 around the line
connecting the source and the detector. Equation (25) can be further simplified by expressing
the eigenvectors |ψµ〉 in terms of the eigenvectors |φn(m)〉 of the smaller blocks B(m) as
discussed in section 3.2.1. This result, as well as a number of special cases, were given in [22]
and are not repeated here.

In the case ẑ = ŝ0, expression (23) contains only matrix elements of χ(r; ŝ0) with
m′ = 0. This follows from the fact that Yl′m′(ŝ0; ŝ0) = δm′0

√
(2l′ + 1)/4π . The corresponding

expression for the matrix elements of χ(r; ŝ0) is

〈lm|χ(r; ŝ0)|l′0〉 = (−1)l√
π(2l′ + 1)σlσl′

l̄∑
M=−l̄

l̄∑
j=0

Y ∗
|l−l′|+2j,m(r̂; ŝ0)

×C
l′,M
l,M,|l−l′ |+2j,0C

|l−l′|+2j,m

l,m,l′,0

∑
µ

′ 〈lM|ψµ〉〈ψµ|l′M〉
λ3

µ

k|l−l′|+2j

(
R

λµ

)
. (26)

Derivation of the above result is analogous to that for χ(r; r̂); see appendix A for details.

3.4. Plane-wave decomposition of Green’s function

Having in mind further applications of the MRRF to solving boundary-value problems, we
derive the plane-wave decomposition of Green’s function. The latter is defined by the two-
dimensional Fourier integral

G(r, ŝ; r0, ŝ0) =
∑
lm

∑
l′m′

∫
d2q

(2π)2
exp[iq · (ρ − ρ0)]

×Ylm(ŝ; ẑ)〈lm|κ(q; z − z0)|l′m′〉Y ∗
l′m′(ŝ0; ẑ). (27)
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Here ẑ is a selected direction in space which coincides with the z-axis of the laboratory frame,
ρ is a two-dimensional vector in the x–y plane (r = ρ + zẑ and ρ · ẑ = 0) and the direction of
x- and y-axes is arbitrary. By comparing the above expression to (24), we find that

κ(q; z) =
∫ ∞

−∞

dkz

2π
exp(ikzz)D(q + ẑkz; ẑ)K

(√
q2 + k2

z

)
D†(q + ẑkz; ẑ). (28)

Here D(q + ẑkz; ẑ) should be understood as a function of the polar angles of the vector
k = q + ẑkz in the laboratory frame. The latter are defined by

cos θ = kz

/√
q2 + k2

z , sin θ = q
/√

q2 + k2
z . (29)

Integral (28) can be evaluated analytically. The following expression for the matrix elements
of κ(q; z) is derived in appendix B:

〈lm|κ(q; z)|l′m′〉 = exp[−i(m − m′)ϕq̂]√
σlσl′

[sgn(z)]l+l′+m+m′
l∑

m1=−l

l′∑
m2=−l′

∑
µ

′

× dl
mm1

[iτ(qλµ)]〈lm1|ψµ〉exp[−Qµ(q)|z|]
λ2

µQµ(q)
〈ψµ|l′m2〉dl′

m′m2
[iτ(qλµ)], (30)

where

Qµ(q) =
√

q2 + 1
/
λ2

µ, (31)

the complex angles iτ(x) are defined by the relations

cos[iτ(x)] =
√

1 + x2, sin[iτ(x)] = −ix, (32)

and the angle ϕq̂ is the polar angle of the two-dimensional vector q in the x–y plane. The
Wigner d-functions dl

mm′(iτ) in the above expression are algebraic functions of cos(iτ) and
sin(iτ) (an explicit expression in terms of Jacobi polynomials is given in appendix B). An
expression for κ(q; z) in terms of the block eigenvectors |φn(M)〉 which were introduced in
section 3.2.1 is also given in appendix B. Here we note some of the symmetry properties of
the matrices κ(q; z). Under inversion of the z-axis, we have κ(q,−z) = Pzκ(q, z)Pz, or, in
component form,

〈lm|κ(q;−z)|l′m′〉 = (−1)l+l′+m+m′ 〈lm|κ(q; z)|l′m′〉. (33)

Simultaneous inversion of the x- and y-axes (or, equivalently, rotation around the z-axis by
the angle π ) is expressed as κ(−q, z) = Pxyκ(q, z)Pxy , or, in component form,

〈lm|κ(−q; z)|l′m′〉 = (−1)m+m′ 〈lm|κ(q; z)|l′m′〉. (34)

We also note some particular cases of expressions (27) and (30). First, consider the case
ŝ = ŝ0 = ẑ. This corresponds to the source and detector being oriented perpendicular to the
surface of a slab. We then use Ylm(ẑ; ẑ) = δm0

√
(2l + 1)/4π to obtain

G(r, ẑ; r0, ẑ) =
∞∑

l,l′=0

√
(2l + 1)(2l′ + 1)

4π

∫
d2q

(2π)2
exp[iq · (ρ − ρ0)]〈l0|κ(q; z − z0)|l′0〉.

(35)

With the use of identity (A.12) given below, 〈l0|κ(q; z)|l′0〉 can be expressed in terms of the
associated Legendre functions of the first kind P m

l (x) as

〈l0|κ(q; z)|l′0〉 = [sgn(z)]l+l′

√
σlσl′

l∑
m1=−l

l′∑
m2=−l′

√
(l − m1)!(l′ − m2)!

(l + m1)!(l′ + m2)!

∑
µ

′
P

m1
l

[
λµQµ(q)

]

×〈lm1|ψµ〉exp[−Qµ(q)|z|]
λ2

µQµ(q)
〈ψµ|l′m2〉P m2

l′ [λµQµ(q)]. (36)
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Next, consider the case q = 0. The operator κ(0; z) describes one-dimensional
propagation due to a planar source. We use dl

mm′(0) = δmm′ to obtain

〈lm|κ(0; z)|l′m′〉 = δmm′ [sgn(z)]l+l′

√
σlσl′

∑
µ

′〈lm|ψµ〉exp(−|z|/λµ)

λµ

〈ψµ|l′m′〉. (37)

3.5. Plane wave and evanescent modes for the RTE

Until now we considered solutions to the inhomogeneous RTE. However, the solution of
boundary-value problems requires knowledge of the general solution to the homogeneous
equation. We seek such a solution in the form exp(−k · r)

∑
lm〈lm|c〉Ylm(ŝ; k̂). Upon

substitution of this ansatz into the RTE with ε = 0, we find that |k| must be the generalized
eigenvalue (with the direction of k being arbitrary) and |c〉 must be the generalized eigenvector
of the equation kR|c〉 = �|c〉, where the matrices R and � are defined by (13)–(15). Next
we use (8) to express the spherical functions Ylm(ŝ; k̂) in terms of the spherical functions
Ylm(ŝ; ẑ) defined in a laboratory frame with the z-axis pointing in a selected direction. Then
the general solutions to the homogeneous RTE (1) can be written as a superposition of the
following modes:

Ik̂,M,n(r, ŝ) = exp

(
−k̂ · r
λMn

) ∑
lm

Ylm(ŝ; ẑ)
exp(−imϕk̂)√

σl

dl
mM(θk̂)〈l|φn(M)〉. (38)

Here it is more convenient to use the notation for block eigenvectors |φn(M)〉 which were
introduced in section 3.2.1. The modes are labelled by the unit vector k̂ (k̂ · k̂ = 1) whose
polar angles in the laboratory frame are θk̂ and ϕk̂ and by the composite index µ = (M, n).
We note that it is sufficient to consider only modes with positive eigenvalues λMn (µ ∈ �+;
see section 3.2.2) due to the obvious symmetry I−k̂,−M,n(−r, ŝ) = Ik̂,M,n(r, ŝ).

However, the modes (38) with purely real vector k̂ cannot be used to construct a solution
to a boundary-value problem in a half-space or in a slab. This is because each mode is
exponentially growing in the direction −k̂. Therefore, it is necessary to define evanescent
modes with complex-valued vectors k̂. These modes are oscillatory in the x–y plane and
exponentially decaying (or growing) in the z-direction. Namely, let

k̂ = −iλMnq ± ẑλMnQMn(q), (39)

where q · ẑ = 0. The polar angles of k̂ are defined as follows: ϕk̂ = ϕq̂, cos(θk̂) = k̂ · ẑ =
±λMnQMn(q) and sin(θk̂) = k̂ · q̂ = −iqλMn. Thus, we can write θk̂ = iτ(qλMn), where the
sine and cosine of the complex angle iτ(x) are given by (32). This gives rise to two kinds of
evanescent modes:

I
(+)
q,M,n(r, ŝ) = exp[iq · ρ − Qµ(q)z]

∑
lm

Ylm(ŝ; ẑ)
exp(−imϕq̂)√

σl

× dl
mM [iτ(qλMn)]〈l|φn(M)〉, (40)

I
(−)
q,M,n(r, ŝ) = (−1)M exp[iq · ρ + Qµ(q)z]

∑
lm

Ylm(ŝ; ẑ)
exp(−imϕq̂)√

σl

× (−1)l+mdl
m,−M [iτ(qλMn)]〈l|φn(M)〉. (41)

Here we have used the symmetry properties of dl
mM(θ) under the transformation θ → π − θ

(which corresponds to change of sign of the factor cos(θ)); hence the additional phase factor
(−1)l+m and the different sign of the index M in (41). The phase factor (−1)M is introduced
for convenience.
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The plane-wave decomposition (30) can be equivalently rewritten as an expansion in
terms of evanescent waves:

G(r, ŝ; r0, ŝ0) =
∑

µ

′ ∫ d2q

(2π)2
Vq,µI (±)

q,µ (r, ŝ)I (∓)
−q,µ(r0,−ŝ0), (42)

where

Vq,µ = 1

λ2
µQµ(q)

(43)

and the upper signs must be selected if z > z0 while the lower signs are selected if z < z0. It
can be easily verified that the expression (42) obeys the reciprocity condition.

Now we make the following observation. Evanescent waves propagating in different
directions cannot, in principle, have identical angular dependence. In particular, by analysing
only the angular dependence of specific intensity in the plane z = 0 (in infinite space), it is
possible to tell if this intensity was produced by sources located to the left of the observation
plane (in the region z < 0), or to the right. To demonstrate this point, we introduce vectors
|ηµ(q)〉 = |ηMn(q)〉 with components 〈lm|ηMn(q)〉 = dl

mM [iτ(qλMn)]〈l|φn(M)〉 and a set of
vectors obtained from |ηµ(q)〉 by coordinate inversion: |η̃µ(q)〉 = P|ηµ(q)〉. The evanescent
modes (40), (41) can be written as

I (+)
q,µ(r, ŝ) = exp[iq · ρ − Qµ(q)z]

∑
lm

Ylm(ŝ; ẑ)〈lm|A(q̂)|ηµ(q)〉, (44)

I (−)
q,µ (r, ŝ) = exp[iq · ρ + Qµ(q)z]

∑
lm

Y ∗
lm(ŝ; ẑ)〈lm|A†(−q̂)|η̃µ(q)〉, (45)

〈lm|A(q̂)|l′m′〉 = δll′δmm′ exp(−imϕq̂)/
√

σl. (46)

Here A(q̂) is a diagonal matrix. Note that A(q̂) depends only on the direction of the real
vector q, while |ηµ(q)〉 depends only on its length. In the case q = 0 we have |ηµ(0)〉 = |ψµ〉
and |η̃µ(0)〉 = |ψ̃µ〉. Thus, the set {|ηµ(0)〉, |η̃µ(0)〉} forms an orthonormal basis in the
Hilbert space spanned by the eigenvectors of W,H. In the case q = 0, the vectors
{|ηµ(q)〉, |η̃µ(q)〉} are no longer orthonormal. However, we believe on physical grounds
that they still form a basis in H.6 Then there exists a dual basis {|ζµ(q)〉, |ζ̃µ(q)〉} such that
〈ζµ(q)|ην(q)〉 = δµν, 〈ζ̃µ(q)|η̃ν(q)〉 = δµν and 〈ζ̃µ(q)|ην(q)〉 = 〈ζµ(q)|η̃ν(q)〉 = 0.

Now assume that we have measured the specific intensity in the plane z = 0.
Denote the two-dimensional Fourier transform of this function with respect to x and y by
I0(q, ŝ) = ∑

lm Ilm(q)Ylm(ŝ; ẑ). The expansion coefficients Ilm(q) are elements of a vector
|I (q)〉. For every value of q, we can form a vector A−1(q̂)|I (q)〉, since A(q̂) is invertible. If
the sources are located to the left of the measurement plane, then 〈ζ̃µ(q)|A−1(q̂)|I (q)〉 = 0
for every µ ∈ �+. In other words, the projection of A−1(q̂)|I (q)〉 onto the dual subspace
spanned by |ζµ(q)〉 is equal to zero. Analogously, if the sources are located to the right of
the observation plane, 〈ζµ(q)|A−1(q̂)|I (q)〉 = 0. Since the projection of a nonzero vector
onto both subspaces cannot be simultaneously zero, the angular dependence of the specific
intensity in the plane z = 0 carries information about the location of the source with respect
to this plane. We emphasize that this analysis is only valid in the absence of boundaries.

6 We do not have a direct proof of this statement. However, in the opposite case, the boundary-value problem would
not be uniquely solvable.
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3.6. Boundary-value problem

Any solution to the RTE in a half-space or in a slab can be constructed as an expansion over
modes (44), (45) with indices µ corresponding to only positive eigenvalues λµ. This fact
is crucial for application of the MRRF to the boundary-value problem, which in radiative
transport theory is formulated in the half-range of the angular variable. Now we demonstrate
how it can be used to construct a solution to the boundary-value problem posed on one or two
planar interfaces.

3.6.1. External source incident on a half-space. Consider the RTE in the half-space z > 0.
In this section we assume that there are no internal sources in the medium, i.e., the RTE has
a zero source term. The presence of external sources is expressed through an inhomogeneous
boundary condition at the interface z = 0:

I0(ρ, ŝ) = Iinc(ρ, ŝ), if ŝ · ẑ > 0. (47)

Here I0(ρ, ŝ) is the specific intensity evaluated at z = 0 and Iinc(ρ, ŝ) is the intensity incident
from vacuum (the external source). The boundary condition (47) is formulated in the half-
range of the angular variable.

The general solution to the RTE in the half-space z > 0 can be written as a superposition
of outgoing evanescent waves of the form (44):

I (r, ŝ) =
∫

d2q

(2π)2

∑′
µ
F (+)

q,µI (+)
q,µ(r, ŝ), (48)

where the unknown coefficients F
(+)
q,µ must be found from the boundary condition (47). Now

we use expansion (48) and expression (44) to calculate I0(ρ, ŝ). Upon Fourier transformation
of (47) with respect to ρ, we arrive at the following equation:∑

lm

∑′
µ
Ylm(ŝ; ẑ)〈lm|A(q̂)|ηµ(q)〉F (+)

q,µ = Iinc(q, ŝ), if ŝ · ẑ > 0. (49)

Next, we multiply both sides of equation (49) by Y ∗
l′m′(ŝ; ẑ) and integrate over all directions

such that ŝ · ẑ > 0. Note that integration in the right-hand side can be extended to all directions
of ŝ since Iinc(q, ŝ) is identically zero for ŝ · ẑ < 0. Thus, for a collimated narrow incident
beam which crosses the boundary at ρ = ρ0 in the direction ŝ0, we obtain∑′

µ
〈lm|BA(q̂)|ηµ(q)〉F (+)

q,µ = exp(−iq · ρ0)Y
∗
lm(ŝ0; ẑ), (50)

where matrix B is given by

〈lm|B|l′m′〉 =
∫

ŝ · ẑ>0
Y ∗

lm(ŝ; ẑ)Yl′m′(ŝ; ẑ) d2s

= δmm′

2

√
(2l + 1)(2l′ + 1)(l − m)!(l′ − m)!

(l + m)!(l′ + m)!

∫ 1

0
P m

l (x)P m
l′ (x) dx. (51)

For a fixed value of q, (50) is a set of linear equations of infinite size. In practice, this
set must be truncated so that l � lmax. Then the number of equations is 2N = (lmax + 1)2,
where we have assumed for simplicity that lmax is odd. But the number of unknowns F

(+)
q,µ

is only equal to N, since µ ∈ �+. Therefore, (50) is formally overdetermined. However,
not all equations in (50) are linearly independent. In fact, the rank of B is exactly equal to
half of its size, which is a consequence of half-range integration in (51). Therefore we come
to the conclusion that (50) is a well-determined system of equations with respect to the N
unknowns F

(+)
q,µ.
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Numerically, the problem of solving (50) can be solved in two different ways. A direct
approach is to consider only equations in (50) which are linearly independent. This is achieved
by only leaving equations in the system with l having the same parity as m, e.g., for a fixed
m, l = |m|, |m| + 2, |m| + 4, . . . , with the restriction l � lmax. Another approach is to seek the
generalized Moore–Penrose pseudoinverse of (50). In this case eigenvectors of the truncated
matrix B must be found numerically. If the size of B is even, half of its eigenvalues will be
zero. Let |ξν〉 be the eigenvectors of B with nonzero eigenvalues αν . Then the system of
equations (50) can be rewritten as

αν

∑′
µ
〈ξν |A(q̂)|ηµ(q)〉F (+)

q,µ = exp(−iq · ρ0)
∑
lm

〈ξν |lm〉Y ∗
lm(ŝ0; ẑ). (52)

We note that in the limit lmax → ∞, the eigenvectors of B are known and are of simple form:
〈lm|ξŝ〉 = Y ∗

lm(ŝ; ẑ) with the eigenvalues being unity for ŝ · ẑ > 0 and zero otherwise, i.e., B is
idempotent.

The system (52) can be simplified by the substitution F
(+)
q,µ = f

(+)
q,µ exp(−iq · ρ0). The

coefficients f
(+)
q,µ are then independent of the source coordinate ρ0. Another simplification

is achieved by noting that both A and B are diagonal in indices m and m′. In effect, the
system (52) must be solved once for each value of |q|; the dependence of the solution on the
direction of q is trivial. If, in addition, the incident beam is normal to the interface (ŝ0 = ẑ),
the solutions do not depend on q̂ at all.

The additional computational complexity associated with solving the boundary-value
problem is then as follows. For every numerical value of the lengths of the vector q which
is used in the expansion (48), a system of linear equations of size N = (lmax + 1)2 must be
solved (the cost of diagonalization of B is negligibly small). Thus, consideration of boundary
conditions adds significant computational complexity to the problem. This is a consequence
of the fact that the rotation matrices exp[τ(qλµ)Jy], unlike the matrix W , are not diagonal in
m and m′. As a result, the system of equations (52) is not block diagonal and, in addition,
q-dependent. However, the problem is easily solvable for lmax � 100, which is, perhaps, more
than is needed in any practical computation.

3.6.2. External source incident on a slab. The generalization of the mathematical apparatus
developed in section 3.6.1 to the case of the RTE in a finite slab is straightforward. Consider
RTE in the slab 0 < z < L. The external source is assumed to be incident from the left. Then
the boundary conditions read

I0(ρ, ŝ) = Iinc(ρ, ŝ), if ŝ · ẑ > 0, (53)

IL(ρ, ŝ) = 0, if ŝ · ẑ < 0, (54)

where I0 and IL are the specific intensities evaluated at the surfaces z = 0 and z = L,
respectively. The general solution inside the slab has the form

I (r, ŝ) =
∫

d2q

(2π)2

∑′
µ

[
F (+)

q,µI (+)
q,µ(r, ŝ) + F

(−)
−q,µI

(−)
−q,µ(r,−ŝ)

]
, (55)

where F
(+)
q,µ and F

(−)
q,µ are unknown coefficients. After some manipulations, we arrive at the

following system of equations:∑′
µ

{〈lm|BA(q̂)|ηµ(q)〉F (+)
q,µ + exp[−Qµ(q)L]〈l,−m|BA†(q̂)|ηµ(q)〉F (−)

q,µ

}
= exp(−iq · ρ0)Y

∗
lm(ŝ0; ẑ), (56)∑′

µ

{
exp[−Qµ(q)L]〈lm|BA(q̂)|η̃µ(q)〉F (+)

q,µ + 〈l,−m|BA†(q̂)|η̃µ(q)〉F (−)
q,µ

} = 0. (57)
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This set of equations is the analogue of (50) for the case of a finite slab. In the limit L → ∞
one has F

(−)
q,µ = 0 and (56) coincides with (50). We note that for a fixed q, (56), (57) is a set

of 2N linearly independent equations for 2N unknowns. The methods briefly discussed in
section 3.6.1 can be used to obtain the solution.

3.6.3. Internal source in a half-space. Next, we consider an internal source in the half-space
z > 0. Here we assume that there are no external sources. However, if this is not so, the
solution can be obtained by simple superposition.

Consider a point unidirectional source of the form ε = δ(ρ − ρ0)δ(z − z0)δ(ŝ − ŝ0),
where z0 > 0. The general solution in the region 0 < z < z0 is written as

I (r, ŝ) =
∫

d2q

(2π)2

∑
µ

′[
Vq,µI (−)

q,µ (r, ŝ)I (+)
−q,µ(r0,−ŝ0) + F (+)

q,µI (+)
q,µ(r, ŝ)

]
. (58)

The second term in the square brackets in the right-hand side of the above expression can
be interpreted as the surface term in the Kirchhoff-type formula for Green’s function (for
the formulation of the Kirchhoff integral specific to the RTE see [25] or, for a more detailed
derivation, [28]). The boundary condition at the interface z = 0 reads

I0(ρ, ŝ) = 0, if ŝ · ẑ > 0. (59)

The fact that the boundary condition is homogeneous reflects the fact that there are no external
sources. The latter can be included by considering an inhomogeneous boundary condition of
the type (47). By analogy with section 3.6.1, we immediately arrive at the following set of
equations for the unknown coefficients F

(+)
q,µ:∑′

µ

[〈lm|BA(q̂)|ηµ(q)〉F (+)
q,µ + Vq,µ〈l,−m|BA†(q̂)|ηµ(q)〉I (+)

−q,µ(r0,−ŝ0)
] = 0. (60)

Similar to (50), this is a set of N linearly independent equations with respect to N unknowns.

4. Numerics

Now we illustrate the expressions obtained in section 3.3 for the RTE Green’s function in
an infinite medium with several numerical examples. We have computed Green’s function
by truncating the series in (23) at l, l′ � lmax and using the reference frame in which the
z-axis is aligned with the direction of the source, ŝ0. Correspondingly, the expression (26)
was used to compute the matrix elements of χ . Note that in this expression the summation
over M and j is finite; however, the summation over the modes |ψµ〉 is infinite and must be
truncated. We have found empirically that, for each block B(M) of the matrix W , summation
over N = 500 eigenmodes (which corresponds to 1000 × 1000 matrices B(M)) is sufficient
for all cases shown below. Further increase of N does not change the result within double
precision machine accuracy. The results start to deviate noticeably from those computed
at N = 500 when N is taken to be smaller than ∼100, especially when lmax is relatively
large. Further, we have used the Henyey–Greenstein model for the phase function, so that
Al = gl where 0 < g < 1 is a parameter. In all figures shown below we calculate the specific
intensity I (r, ŝ) due to a point unidirectional source placed at the origin and illuminating in
the z-direction. The distance from the source is measured in units of the transport free path,
�∗ = 1/[µa + (1 − g)µs], which plays an important role in diffusion theory.

It should be noted that numerical implementation of the formulae derived in this paper
requires a degree of caution because Green’s function of the RTE is not square integrable
with respect to both of its arguments, r and ŝ. Therefore, one cannot expect uniform point-
wise convergence of the result with lmax. Mathematically, this is manifested by the fact
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Figure 2. Angular dependence of the specific intensity for forward propagation at the distance z

from the source. Left column (a), (c): convergence with parameter lmax. Right column (b), (d):
solid line shows the converged result obtained with subtraction of the ballistic term; dashed line:
result obtained without subtraction of the ballistic term for the same lmax. Top row (a), (b):
g = 0.5, µa/µs = 0.5, z = 20�∗. Bottom row (c), (d): g = 0.2, µa/µs = 0.01 and z = 10�∗.

that the Bessel functions kl(x) that enter into (25), (26) diverge factorially for large orders:
kl(x) ∝ l!!(l → ∞). This growth cannot be compensated either by the Clebsch–Gordan
coefficients, or by the eigenvector components 〈lm|ψµ〉 which decay, at best, exponentially (see
discussion in section 3.2.3). Therefore, (23), (25), (26) must be viewed as expressions defining
the moments of Green’s function and the latter as a generalized function or a distribution.
Nevertheless, in most practical situations, the spatial and angular dependences of Green’s
function can be approximated by smooth square-integrable functions by truncating (23) at
certain values of lmax that provide desirable angular resolution. Computations are further
facilitated by analytical subtraction of the ballistic component of Green’s function:

Gb(r, ŝ; r0, ŝ0) = δ(ŝ − ŝ0)δ(R̂ − ŝ0)
exp(−µtR)

R2
, R = r − r0. (61)

The corresponding ballistic contribution to χb is

〈lm|χb(R; ŝ0)|l′m′〉 = δm0

√
(2l + 1)(2l′ + 1)

exp(−µtR)

4πR2
. (62)

However, it is impossible to remove the singularities completely, and the remainder of such a
subtraction still remains non-square integrable.

The effect of subtraction of the ballistic term and convergence with lmax for forward
propagation is illustrated in figure 2. Here θ is the angle between the direction of observation,
ŝ, and the positive direction of the z-axis: cos θ = ŝ · ẑ. In the left column (plots (a), (c))
we show the dependence of the specific intensity (with the ballistic term subtracted) on the
maximum order of spherical functions lmax. We assumed that convergence was reached when
incrementing lmax by 1 resulted in less than 0.1% relative change of the specific intensity in
any direction. However, we emphasize again that this convergence is asymptotic. In the right
column of images (b), (d), we compare the angular dependence of the specific intensity for the



130 G Panasyuk et al
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Figure 3. Angular dependence of the specific intensity for forward (a) and backward (b)
propagation obtained at lmax = 21, g = 0.98 and µa/µs = 6 · 10−5. The distance to the
source z is assumed to be positive for forward propagation and negative for backward propagation.
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Figure 4. Illustration of angles α and β.

maximum value of lmax which was used in the graph to the left with and without the ballistic
term. Note that the subtracted ballistic term can be added back analytically to the solutions
obtained. In all figures shown below, the ballistic term is subtracted.

Figure 3 illustrates the specific intensity for forward and backward propagation. Optical
parameters were chosen to be close to those of typical biological tissues in the near
infrared spectral region (see figure caption for details). The point of observation is placed
at r = (0, 0, z), where z is positive for forward propagation and negative for backward
propagation, and θ is defined in both cases as the angle between the vector ŝ and the positive
direction of the z-axis. It can be seen from the figure that the specific intensity in the backward
direction is significantly smaller compared to that in the forward direction, even at relatively
large source–detector separations (|z| = 6�∗). It can be also seen that the angular distribution
of the specific intensity in the forward direction is more sharply peaked than that in the
backward direction. This can be explained by noting that backward propagation involves
more scattering events than forward propagation of the same distance.

Now we turn to the off-axis case. Here the source is still placed at the origin and illuminates
in the positive z direction, while the point of observation is placed at a point r = (0, y, 0).
Below, we show two type of graphs. In the first case, the vector ŝ is in the y–z plane, and its
orientation is characterized by the angle α with respect to the positive direction of the z-axis.
In the second case, ŝ is in the x–y plane (perpendicular to ŝ0) and is characterized by the angle
β with respect to the positive direction of the y-axis. The angles α and β (not to be confused
with the Euler angles) are illustrated in figure 4. Note that α varies from 0 to 2π while β is
restricted to the interval [0, π ] due to the obvious symmetry.
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Figure 5. Angular distribution of specific intensity for off-axis propagation. Parameters: g = 0.98
and µa/µs = 6 · 10−5 (a), (b), µa/µs = 0.03 (c), (d), µa/µs = 0.2 (e), ( f ).

In figure 5 we illustrate the specific intensity for highly forward-peaked scattering
(g = 0.98) and the following three different ratios of µa/µs : 6 · 10−5, 0.03 and 0.2. Note that
the corresponding ratios of µa/µ

′
s , where µ′

s = (1−g)µs is the reduced scattering coefficient,
are 0.003, 1.5 and 10, respectively. In the first case, the transport mean free path is mainly
determined by scattering, while in the third case it is determined by absorption. The left
column of images (a), (c), (e) illustrates the angular dependence of the specific intensity as a
function of the angle α (vector ŝ is in the y–z plane). The oscillations visible in figure 5(e)
is due to the non-square integrability discussed above. However, the values of the specific
intensity at the region where the oscillations are visible are 2 to 3 orders of magnitude smaller
than those at the peak.

It is interesting to analyse the position of the maximum of the curves in figures 5(a), (c),
(e), α0. As the distance between the source and the detector increases, α0 approaches π/2. This
corresponds to a vector ŝ coinciding with the direction from the source to detector. However,
for relatively small source–detector separations, α0 is larger than π/2. The dependence of
α0 on the source–detector separation is illustrated in figure 6(a) for physiological parameters.
The dependence of α0 on the source–detector separation can be understood at the qualitative
level. Indeed, at large separations, the angular distribution of the specific intensity is expected
to be independent of the source orientation, with the maximum attained when ŝ is aligned
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Figure 6. (a) Dependence of the position of maximum α0 on the distance to the source, y, for
physiological parameters: g = 0.98 and µa/µs = 6 · 10−5. (b) Schematic illustration of typical
‘photon trajectories’ that correspond to maxima in graphs 5(a), (c), (e).
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Figure 7. Convergence of the specific intensity with lmax for g = 0.98, µa/µs = 0.2 and
y = 22�∗.

with the direction from the source to the detector. This corresponds to α0 = π/2. At smaller
separations, the ‘photons’ arrive at the detector locations along some ‘typical’ (most probable)
trajectories which are schematically illustrated in figure 6(b). We assume here that α0 is
determined by the angle at which the most probable trajectory crosses the y-axis.

In figures 5(b), (d), ( f ), the specific intensity is shown as a function of the angle β (vector ŝ
is in the x–y plane). In this case, the maximum of the curves always corresponds to β = 0,
which could be also inferred from the symmetry. We note that Ixy(β = 0) = Iyz(α = π/2),
where the lower subscripts indicate the plane in which contains the vector ŝ.

The curves shown in figure 5 have a dynamic range of approximately 103. A dynamic
range of this magnitude was obtained due to the use of large values of lmax. For smaller values
of lmax, the result can be grossly inaccurate and even negative. For example, in figure 7 we
illustrate convergence with lmax to one of the curves shown in figure 5(e). An accurate value
of specific intensity at α ≈ π/2 (≈10−3 relative error) was obtained at lmax = 39. Note that
at lmax = 10, the computed specific intensity is still grossly inaccurate.

5. Discussion

The theoretical approach developed in this paper is, essentially, a spectral approach. Spectral
methods have been studied extensively for the one-dimensional RTE [29]. However, in the 3D
case these methods become very difficult to use. The substantially novel element of this paper
is that we derive a usable spectral method for the full three-dimensional RTE with an arbitrary
phase function and planar boundaries. The analytical part of the solution is of considerable
complexity. However, this complexity is traded for the relative simplicity of the numerical
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part. In fact, we believe that we have reduced the numerical part of the computations to the
absolute minimum which is allowed by the mathematical nature of the problem.

This paper is limited to consideration of spatially independent optical coefficients and
phase functions. However, we note that Green’s function for a macroscopically homogeneous
medium is of special interest, since it is used in linearized image reconstruction in optical
tomography [24] and, more generally, in nonlinear image reconstruction based on the inversion
of a functional series or the Newton–Kantorovich method [30]. Assuming the presence of
only absorptive inhomogeneities in the medium, the linearized kernel of the integral equation
of diffusion tomography has the form (in the slab imaging geometry) [24]

�(ρ1, ρ2; r) =
∫

G(ρ1, z = 0, ŝ1 = ẑ; r, ŝ)G(r, ŝ; ρ2, z = L, ŝ2 = ẑ) d2s, (63)

where ρ1 and ρ2 are the transverse coordinates of the source and detector, respectively, located
on opposite surfaces of the slab, and G is the slab Green’s function with constant absorption
and scattering coefficients. One of the advantages of solutions obtained in this paper, compared
to those based on discrete ordinates, is that the angular integral in the above formula can be
evaluated analytically [31].
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Appendix A. Calculation of the integral (24)

In this appendix we evaluate the integral (24) for different choices of ẑ. Written in component
form, this integral reads

〈lm|χ(r; ẑ)|l′m′〉 = 1√
σlσl′

l∑
m1=−l

l′∑
m2=−l′

∫
d3k

(2π)3
exp(ik · r) exp[−i(m − m′)ϕk̂]

× dl
mm1

(θk̂)d
l′
m′m2

(θk̂)
∑

µ

〈lm1|ψµ〉〈ψµ|l′m2〉
1 + ikλµ

. (A.1)

We start with the case ẑ = r̂. Then we have k · r̂ = kr cos θk̂. We also note that
〈lm1|ψµ〉〈ψµ|l′m2〉 ∝ δm1m2 , so that the summation over m1 and m2 can be replaced by
summation over a single index M which runs from −l̄ to l̄, where l̄ = min(l, l′). Then (A.1)
can be rewritten as

〈lm|χ(r; r̂)|l′m′〉 = 1√
σlσl′

l̄∑
M=−l̄

∫ ∞

0

k2 dk

(2π)2

∑
µ

〈lM|ψµ〉〈ψµ|l′M〉
1 + ikλµ

I, (A.2)

where I is the angular part of the integral (the list of formal arguments of I is omitted):

I =
∫

sin θk̂ dθk̂ dϕk̂

2π
exp[i(m′ − m)ϕk̂] exp(ikr cos θk̂)d

l
mM(θk̂)d

l′
m′M(θk̂). (A.3)

The integral over ϕk̂ is evaluated immediately with the result 2πδmm′ . Integration over θk̂
requires expanding the exponent in the integrand as

exp(ikr cos θk̂) =
∞∑

L=0

iL(2L + 1)jL(kr)dL
00(θk̂), (A.4)
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where jL(x) are the spherical Bessel functions of the first kind, and using the following
formula (see [27], section 4.11.2, formula 8, and the symmetry properties of d-functions given
in section 4.11, formula 1 of the same reference):∫ π

0
dl

mM(θ)dl′
mM(θ)dL

00(θ) sin θ dθ = 2(−1)m−M

2L + 1
C

L,0
l,m,l′,−mC

L,0
l,M,l′,−M, (A.5)

where C
j3m3
j1m1j2m2

are the Clebsch–Gordan coefficients. Taking into account that C
L,0
l,m,l′,−m is

nonzero only for |l − l′| � L � l + l′, we obtain

I = 2δmm′(−1)m−M

l+l′∑
L=|l−l′|

iLjL(kr)C
L,0
l,m,l′,−mC

L,0
l,M,l′,−M. (A.6)

Next, we substitute this result into (A.5) and, after some rearrangement, arrive at

〈lm|χ(r; r̂)|l′m′〉 = 2δmm′(−1)m√
σlσl′

l̄∑
M=−l̄

(−1)M
l+l′∑

L=|l−l′|
iLC

L,0
l,m,l′,−mC

L,0
l,M,l′,−M

×
∑

µ

〈lM|ψµ〉〈ψµ|l′M〉
∫ ∞

0

k2 dk

(2π)2

jL(kr)

1 + ikλµ

. (A.7)

To evaluate the radial integral, we exploit the symmetry properties of the above expression.
First, we note that C

L,0
l,M,l′,−M = (−1)l+l′+LC

L,0
l,−M,l′,M , while 〈lM|ψµ〉 does not depend on

the sign of M. Thus, the addition of terms with positive and negative values of M in the
above formula (for M = 0) gives zero unless l + l′ + L is even. Likewise, in the case
M = 0, C

L,0
l,0,l′,0 = 0 unless the above sum of indices is even. Correspondingly, the only

nonzero contributions to the sum over L corresponds to L = |l−l′|+2j , where the index j runs
from 0 to l̄. Next, we use the symmetry property of the eigenvectors discussed in section 3.2.2.
This property allows one to limit summation over the eigenvector indices µ to only the values
corresponding to positive eigenvalues λµ while simultaneously replacing the factor 1/(1+ikλµ)

by 1/(1 + ikλµ) + (−1)l+l′/(1 − ikλµ). Thus, we obtain

〈lm|χ(r; r̂)|l′m′〉 = 2δmm′(−1)m√
σlσl′

l̄∑
M=−l̄

(−1)M
l̄∑

j=0

i|l−l′|+2jC
|l−l′|+2j,0
l,m,l′,−m C

|l−l′ |+2j,0
l,M,l′,−M

×
∑

µ

′〈lM|ψµ〉〈ψµ|l′M〉J, (A.8)

where J is the radial integral given by

J =
∫ ∞

0

k2 dk

(2π)2
j|l−l′|+2j (kr)

1 + (−1)l+l′ − ikλµ[1 − (−1)l+l′ ]

1 + k2λ2
µ

. (A.9)

The parity of the Bessel functions in the above integral is the same as that of l + l′. Therefore,
the integrand is an even function of k for all values of the indices, and the integral can be
extended to −∞ and calculated by residues. The result is

J = π i−(|l−l′|+2j)λ−3
µ k|l−l′|+2j (r/λµ). (A.10)

Upon substitution of this result into (A.8), we obtain the formula (25).
In the case ẑ = ŝ0 the dot product k · r cannot be written as kr cos θk̂. Therefore, the

exponent in the angular integral I is expanded as

exp(ik · r) = 4π
∑
LM ′

iLjL(kr)YLM ′(k̂; ŝ0)Y
∗
LM ′(r̂; ŝ0). (A.11)
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We further take advantage of the identity

YLM ′(θk̂, ϕk̂) = (−1)M
′√

4π/(2L + 1)dl
0M ′(θk̂) exp(iM ′ϕk̂) (A.12)

to transform the angular integration to the general form (A.6). Note that azimuthal integration
results in a factor of δM ′m and thus removes summation over M ′. The final result for I is

I = 2(−1)l
√

4π√
2l′ + 1

l+l′∑
L=|l−l′ |

iLjL(kr)Y ∗
Lm(r̂; ŝ0)C

l′,M
l,M,L,0C

L,m
l,m,l′,0, (A.13)

where we have also used C
L,0
L,M,l′−M = (−1)l−M

√
(2L + 1)/(2l′ + 1)C

l′,M
l,M,L,0. The radial

integration, and the symmetry considerations explained above, remain without change.
Substitution of (A.13) into (A.2) and subsequent radial integration leads to the formula (26).

Appendix B. Calculation of the integral (28)

Integral (28), written in terms of components, reads

〈lm|κ(q; z)|l′m′〉 = exp[−i(m − m′)]√
σlσl′

l̄∑
M=−l̄

∑′
n

〈l|φn(M)〉〈φn(M)|l′〉
λ2

nM

I. (B.1)

Here I is the integral over kz:

I =
∫ ∞

−∞

dkz

2π
exp(ikzz)d

l
mM(θ)dl′

m′M(θ)
1 + (−1)l+l′ − iλMn

√
q2 + k2

z [1 − (−1)l+l′ ]

k2
z + q2 + 1

/
λ2

Mn

, (B.2)

where we have used the notations introduced in section 3.2.1 for block eigenvectors |φn(M)〉.
The angle θ is defined by (29) in section 3.4. The Wigner d-functions can be written in terms
of cos θ as

dl
mM(θ) = ξmMZl

mM

(
1 − cos θ

2

) |m−M|
2

(
1 + cos θ

2

) |m+M|
2

P (u,v)
s (cos θ), (B.3)

where ξmM = 1 if m � M and ξ = (−1)m+M if m > M ,

Zl
mM =

√
(l − |m − M|/2 − |m + M|/2)! (l + |m + M|/2 − |m + M|/2)!

(l + |m − M|/2 − |m + M|/2)! (l − |m + M|/2 − |m + M|/2)!
, (B.4)

and P (u,v)
s (x) in expression (B.3) are Jacobi polynomials with s = l − |m − M|/2 − |m +

M|/2, u = |m − M| and v = |m + M|.
The integrand in (B.2) is not, in general, an analytic function of kz. However, the

expression for Green’s function contains a summation over M. It can be shown explicitly that
the combination

dl
mM(θ)dl′

m′M(θ) + dl
m−M(θ)dl′

m′−M(θ) (B.5)

contains only even powers of the factor
√

k2
z + q2 if l + l′ is even and only odd powers of the

same factor if l + l′ is odd (a general proof of this statement is available but omitted). Taking
into account the factor

√
q2 + k2

z [1 − (−1)l+l′ ] in the right-hand side of (B.2), we arrive at
the conclusion that the integrand becomes analytic after addition of terms with positive and
negative values of M. Note that the eigenvectors and eigenvalues do not depend on the sign
of M and the above consideration applies to the case M = 0. Consequently, one can evaluate
(B.2) by residues choosing a branch of the complex-valued function

√
k2
z + q2 arbitrarily.
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The integrand of (B.2) has simple poles at kz = ±i
√

q2 + 1/λ2
Mn. Taking into account

these poles leads to the following expression:

I = [sgn(z)]l+l′+m+m′
λMn exp

[−√
1 + (qλMn)2|z|/λMn

]
√

1 + (qλMn)2
dl

mM [iτ(qλMn)]d
l′
m′M [iτ(qλMn)].

(B.6)

Substitution of (B.6) into (B.1) leads to an expression which is equivalent to (28).
We note that the integrand of (B.2) has another set of poles. Namely, these are poles of

the functions dl
mM [θ(kz)] at kz = ±iq. These poles are of a purely geometrical nature. We

have calculated analytically the contributions of these poles to Green’s function to the few
lowest orders in l, l′, and found that they cancel each other. However, we do not have a general
proof of such cancellation to all orders. On the other hand, it is clear that if these poles could
contribute to the plane-wave decomposition of Green’s function, the result would not satisfy
the RTE since the matrix W is bounded and has no infinite eigenvalues. To confirm the validity
of the obtained analytical expression, we have computed I numerically by the fourth-order
Simpson rule for a model set of parameters. Then we used this result to compute Green’s
function for the particular case ŝ = ŝ0 = ẑ. The result coincided with the one predicted by
formula (35) with machine accuracy in double precision.
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